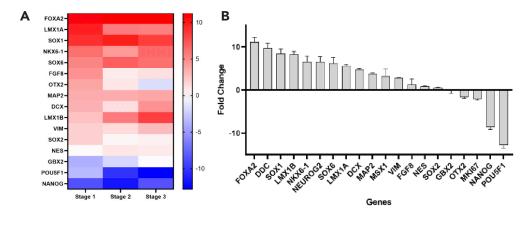


TrailBio® A9 Dopaminergic Neurons

Cells

Trailhead Biosystems® offers committed dopaminergic neurons from human iPSC cultures. These cells offer the opportunity for investigation of **Parkinson's Disease** in vitro and **in vivo**, **drug discovery**, **human disease modeling**, and more. Substantia Nigra pars compacta (SNc) dopaminergic neurons of the CNS play a key role in motor and non-motor functions and their loss in Parkinson's Disease leads to devastating complications. In vitro cell models of iPSC-derived TH+ cells of SNc neurons, can vastly help with development of effective treatments.

Platform


Using **HD-DoE®**, we created a multistage protocol for the rapid (6 days) and homogenous induction of midbrain progenitors which are capable of effectively maturing to dopaminergic neurons which can be identified using cellular markers.

Quality

Quality is defined at multiple stages during manufacturing using flow cytometry, gene expression by qRT-PCR, bulk RNA-seq data, and functionality of cells as determined by key cellular markers using immunocytochemistry (ICC) data.

Data

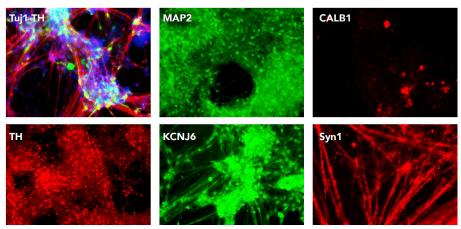

TrailBio[®] A9 Dopaminergic Neurons gene expression and functional assessment. Gene expression analysis shows that upon differentiation, these cells express midbrain dopaminergic progenitor markers (Fig 1, RNA-seq data at key time points). Functionality is demonstrated by expression of key cellular markers which confirm their identity. (Fig 2, immuno-cytochemistry staining of cellular markers.)

Fig 1. RNA-seq Analysis of Gene Expression

RNA-seq analysis of midbrain dopaminergic progenitors.

- (A) heatmap of normalized counts on day 6.
- **(B)** Bar plot shows fold change of gene profile of differentiation dopaminergic neurons on day 9.

Fig 2. Cell Characterization by ICC

Staining of TrailBio® A9
Dopaminergic Neurons (at
post-revival day 1). Cells express
midbrain neuronal characteristic
markers including Tyrosine
Hydroxylase (TH), Potassium
channel, inwardly rectifying,
subfamily J6 (KCNJ6).

Mature neuronal markers such as Microtubule-Associated Protein (MAP2) and Synapsin1 (Syn1) are also expressed.

TrailBio® A9 Dopaminergic Neurons

Format

Product	Cell Density	Product #
TrailBio® A9 Dopaminergic Neurons	5 X 10 ⁶	EC-03-05

Production		
Donor Information	Human Male	
Source Cell	iPSCs from CD34+ Cord Blood	
Karyotype	Normal	
Configuration	Cryopreserved Cells in Vials	

Handling		
Shipping info	Dry Ice	
Storage	Liquid Nitrogen	
Usage	Research Use Only	

Trailhead® Cells

- Built from Scratch: We create novel protocols for producing specialized human iPSC-derived cells
- HD-DoE® Platform: Protocols are built by exploring high-dimensional space of regulatory inputs
- Data, Not Hypothesis, Driven: Our methods are based on empirical data obtained using HD-DoE®
- Quality by Design: Product development adheres to a Quality-by-Design standard at all stages
- Cellular Identity: Cell fate is confirmed by molecular and functional attributes

Applications

Trailhead's cells are well suited for use in 2D and 3D applications, including drug discovery, disease-modeling, drug toxicity, 3D tissue printing, organoid formation, tissue on-a-chip manufacturing, and functional assay development.

Contact us: info@trailbio.com

